How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    The aldosterone synthase (CYP11B2) and 11beta-hydroxylase (CYP11B1) genes are not expressed in the rat heart.
  • Author:"Ye, P;Kenyon, C J;MacKenzie, S M;Jong, A S;Miller, C;Gray, G A;Wallace, A;Ryding, A S;Mullins, J J;McBride, M W;Graham, D;Fraser, R;Connell, J M C;Davies, E"

  • Published Year:2005

  • Journal:Endocrinology

  • Abstract:"Aldosterone synthase (CYP11B2) and 11beta-hydroxylase (CYP11B1) catalyze the production of aldosterone and corticosterone, respectively, in the rat adrenal cortex. Recently, there has been some debate as to whether these corticosteroids are also produced in the hearts of rodents and humans, possibly contributing to the development of hypertrophy and myocardial fibrosis. To investigate this, we have used our established, highly sensitive real-time quantitative RT-PCR method to measure CYP11B1 and CYP11B2 mRNA levels in adrenal and cardiac tissue from several rat models of cardiovascular pathology. We have also studied isolated adult rat ventricular myocytes treated with angiotensin II and ACTH. Total RNA was isolated from the adrenal and cardiac tissue of 1) male Wistar rats with heart failure induced by coronary artery ligation and sham-operated controls; 2) stroke-prone spontaneously hypertensive rats and Wistar Kyoto rats as controls; 3) cyp1a1Ren-2 transgenic rats and Fischer controls; 4) isolated adult Sprague-Dawley ventricular myocytes incubated with 11-deoxycorticosterone (DOC), DOC plus angiotensin II, or DOC plus ACTH. Adrenal CYP11B2 expression was significantly increased in transgenic rats compared with Fischer controls (1.3 x 10(9)+/- 1.2 x 10(9) vs. 2.1 x 10(7) +/- 7.0 x 10(6) copies/microg RNA; P < 0.05). There were no other significant differences in adrenal CYP11B2 or CYP11B1 expression between the model animals and their respective controls. Cardiac CYP11B1 and CYP11B2 mRNA transcript levels from all in vivo and in vitro groups were never greater than 100 copies per microgram total RNA and therefore too low to be detected reproducibly. This suggests that cardiac corticosteroid production is unlikely to be of any physiological or pathological significance."

  • 10.1210/en.2005-0370

  • |Click to search this paper in PubMed|   | back to gene page|