How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia.
  • Author:"Goldstein, Richard S;Gallowitsch-Puerta, Margot;Yang, Lihong;Rosas-Ballina, Mauricio;Huston, Jared M;Czura, Christopher J;Lee, David C;Ward, Mae F;Bruchfeld, Annette N;Wang, Haichao;Lesser, Martin L;Church, Adam L;Litroff, Adam H;Sama, Andrew E;Tracey, Kevin J"

  • Published Year:2006

  • Journal:"Shock (Augusta, Ga.)"

  • Abstract:"Cerebral and myocardial ischemia, two of the leading causes of morbidity and mortality worldwide, are associated with inflammation that can lead to multiple organ failure and death. High-mobility group box 1(HMGB1), a recently described mediator of lethal systemic inflammation, has been detected in individuals with severe sepsis and hemorrhagic shock, but its role during ischemic injury in humans is unknown. To determine whether systemic HMGB1 levels are elevated after ischemic injury, a prospective observational study was performed in subjects with a diagnosis of either Acute Coronary Syndrome (ACS) or cerebral vascular ischemia (transient ischemic attack or cerebral vascular accident). Subjects (n, 16; age [mean], 67+/-16.3 years) were enrolled in the North Shore-LIJ emergency department within 24 h of symptom onset. Blood samples were collected, and HMGB1 levels analyzed by Western blot analysis using previously described methods (Wang et al. Science. 1999). Control samples were obtained from healthy age- and sex-matched volunteers (n, 16; age [mean], 68+/-15.8 years). Here, we report that serum HMGB1 levels were significantly elevated in both myocardial ischemia subjects (myocardial control serum HMGB1, 1.94+/-2.05 ng/mL, vs. myocardial ischemia serum HMGB1, 159+/-54.3 ng/mL; P<0.001); and in cerebral ischemia subjects (cerebral control serum HMGB1, 16.8+/-10.9 ng/mL, vs. cerebral ischemia serum HMGB1, 218+/-18.8 ng/mL; P<0.001). These results suggest that systemic HMGB1 levels are elevated in human ischemic disease."

  • 10.1097/01.shk.0000209540.99176.72

  • |Click to search this paper in PubMed|   | back to gene page|