How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Myocardial perfusion imaging with first-pass computed tomographic imaging: Measurement of coronary flow reserve in an animal model of regional hyperemia.
  • Author:"Christian, Timothy F;Frankish, Mei Lee;Sisemoore, Jennifer H;Christian, Madeline R;Gentchos, George;Bell, Stephen P;Jerosch-Herold, Michael"

  • Published Year:2010

  • Journal:Journal of nuclear cardiology : official publication of the American Society of

  • Abstract:"BACKGROUND: The accurate assessment of myocardial blood flow (MBF) is a potential adjunct to the anatomy of CT coronary angiography. PURPOSE: To compare semi-quantitative parameters from first-pass CT (FP CT) imaging with absolute measures of MBF in an animal model of altered MBF. METHODS: A pig model of intracoronary adenosine (n = 8) was used during FP CT. This produces a zone with hyperemic MBF and a control zone within a slice. A subset of these animals also underwent LAD occlusion with imaging. Fluorescent microspheres (Mcsp) were injected into the left atrium to determine absolute MBF concurrent with CT imaging. Pigs were placed in a 64-slice (Philips) CT with acquisition performed during IC adenosine and occlusion. A 40% dilution of Iopamidol 370 (1 mL/kg) was injected IV at 5 mL/second. CT acquisition was ECG gated over 40 cardiac phases with the following parameters: 180 degrees axial mode (pitch = 0), field of view = 250 mmsq, 512 x 512 matrix, slice thickness = 2.5 mm x 10 slices, temporal resolution = 330 ms, 120 kV, 495 ma. Mcsp were injected immediately following CT imaging. The heart was sectioned into 2.5 mm slices to match the CT images and segmented. Time attenuation curves (TAC) were generated from CT in intervention and control zones based on Mcsp values. Mcsp coronary flow reserve (CFR) = hyperemic/control MBF, and CT CFR was derived from intervention/control area under curve from baseline corrected TIC. RESULTS: MBF control = .65 +/- .28, MBF adenosine = 2.6 +/- .7 mL/min/g (P < .0001). CFR = 4.1 +/- 1.1, CT CFR = 4.3 +/- 1.4 (P = NS). There was a significant (r = .94, P < .0001) correlation between CFR and CT CFR. CONCLUSIONS: CT first-pass myocardial perfusion imaging is feasible using a simple semi-quantitative analysis which provides reasonable estimates of MBF."

  • 10.1007/s12350-010-9206-6

  • |Click to search this paper in PubMed|   | back to gene page|