How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease.
  • Author:"Fedele, Francesco;Mancone, Massimo;Chilian, William M;Severino, Paolo;Canali, Emanuele;Logan, Suzanna;De Marchis, Maria Laura;Volterrani, Maurizio;Palmirotta, Raffaele;Guadagni, Fiorella"

  • Published Year:2013

  • Journal:Basic research in cardiology

  • Abstract:"Conventionally, ischemic heart disease (IHD) is equated with large vessel coronary disease. However, recent evidence has suggested a role of compromised microvascular regulation in the etiology of IHD. Because regulation of coronary blood flow likely involves activity of specific ion channels, and key factors involved in endothelium-dependent dilation, we proposed that genetic anomalies of ion channels or specific endothelial regulators may underlie coronary microvascular disease. We aimed to evaluate the clinical impact of single-nucleotide polymorphisms in genes encoding for ion channels expressed in the coronary vasculature and the possible correlation with IHD resulting from microvascular dysfunction. 242 consecutive patients who were candidates for coronary angiography were enrolled. A prospective, observational, single-center study was conducted, analyzing genetic polymorphisms relative to (1) NOS3 encoding for endothelial nitric oxide synthase (eNOS); (2) ATP2A2 encoding for the Ca(2)(+)/H(+)-ATPase pump (SERCA); (3) SCN5A encoding for the voltage-dependent Na(+) channel (Nav1.5); (4) KCNJ8 and KCNJ11 encoding for the Kir6.1 and Kir6.2 subunits of K-ATP channels, respectively; and (5) KCN5A encoding for the voltage-gated K(+) channel (Kv1.5). No significant associations between clinical IHD manifestations and polymorphisms for SERCA, Kir6.1, and Kv1.5 were observed (p > 0.05), whereas specific polymorphisms detected in eNOS, as well as in Kir6.2 and Nav1.5 were found to be correlated with IHD and microvascular dysfunction. Interestingly, genetic polymorphisms for ion channels seem to have an important clinical impact influencing the susceptibility for microvascular dysfunction and IHD, independent of the presence of classic cardiovascular risk factors."

  • 10.1007/s00395-013-0387-4

  • |Click to search this paper in PubMed|   | back to gene page|