How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    C677T polymorphism of the methylenetetrahydrofolate reductase gene is a risk factor of adverse events after coronary revascularization.
  • Author:"Botto, Nicoletta;Andreassi, Maria Grazia;Rizza, Antonio;Berti, Sergio;Bevilacqua, Stefano;Federici, Chiara;Palmieri, Cataldo;Glauber, Mattia;Biagini, Andrea"

  • Published Year:2004

  • Journal:International journal of cardiology

  • Abstract:"BACKGROUND: A common point mutation (C677T) in the gene for 5,10-methylenetetrahydrofolate reductase (MTHFR) is associated with hyperhomocysteinemia, an independent risk factor and a strong predictor of mortality in patients with coronary artery disease (CAD). The aim of this study was to investigate whether C677T polymorphism can be a predictor of major adverse cardiac events after myocardial revascularization. METHODS: We determined MTHFR genotype in 159 patients with CAD undergoing myocardial revascularization [72 percutaneous transluminal coronary angioplasty (PTCA) and 87 coronary artery bypass graft (CABG)]. Recurrent angina, nonfatal myocardial infarction (MI), target vessel revascularization, heart failure and cardiac death were considered major adverse cardiac events that occurred after discharge from index hospitalization. RESULTS: During the follow-up (6.9+/-0.3 months, mean+/-S.E.M.), the composite endpoint accounted for 25.9%, 11.4% and 4.3% for TT, CT and CC genotype (log-rank statistic 5.2, p=0.02), respectively. Subjects with mutant TT genotype had a threefold increase of any cardiac event (hazard ratio [HR]=3.0; 95% [CI], 1.1-8.1). In multiple-variable regression Cox, predictors of events were TT genotype (HR=2.8; 95% CI, 1.01-7.62, p=0.047), low-ejection fraction<40% (HR=4.5; 95% CI, 1.62-12.6, p=0.004) and revascularization procedure (HR=6.1; 95% CI, 1.86-20.34, p=0.003). CONCLUSIONS: These data indicate that the TT genotype seems to be significantly associated with major adverse cardiac events after myocardial revascularization in CAD patients, suggesting a potential pathological influence of homocysteine in the clinical outcome."

  • 10.1016/j.ijcard.2003.06.022

  • |Click to search this paper in PubMed|   | back to gene page|