How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Determinants of subclinical diabetic heart disease.
  • Author:"Fang, Z Y;Schull-Meade, R;Downey, M;Prins, J;Marwick, T H"

  • Published Year:2005

  • Journal:Diabetologia

  • Abstract:"AIMS/HYPOTHESIS: Subclinical left ventricular (LV) dysfunction has been shown by tissue Doppler and strain imaging in diabetic patients in the absence of coronary disease or LV hypertrophy, but the prevalence and aetiology of this finding remain unclear. This study sought to identify the prevalence and the determinants of subclinical diabetic heart disease. METHODS: A group of 219 unselected patients with type 2 diabetes without known cardiac disease underwent resting and stress echocardiography. After exclusion of coronary artery disease or LV hypertrophy, the remaining 120 patients (age 57+/-10 years, 73 male) were studied with tissue Doppler imaging. Peak systolic strain of each wall and systolic (Sm) and diastolic (Em) velocity of each basal segment were measured from the three apical views and averaged for each patient. Significant subclinical LV dysfunction was identified according to Sm and Em normal ranges adjusted by age and sex. Strain and Em were correlated with clinical, therapeutic, echocardiographic and biochemical variables, and significant independent associations were sought using a multiple linear regression model. RESULTS: Significant subclinical LV dysfunction was present in 27% diabetic patients. Myocardial systolic dysfunction by peak strain was independently associated with glycosylated haemoglobin level (p<0.001) and lack of angiotensin-converting enzyme inhibitor treatment (p=0.003). Myocardial diastolic function (Em) was independently predicted by age (p=0.013), hypertension (p=0.001), insulin (p=0.008) and metformin (p=0.01) treatment. CONCLUSIONS/INTERPRETATION: In patients with diabetes mellitus, subclinical LV dysfunction is common and associated with poor diabetic control, advancing age, hypertension and metformin treatment; ACE inhibitor and insulin therapies appear to be protective."

  • 10.1007/s00125-004-1632-z

  • |Click to search this paper in PubMed|   | back to gene page|