How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Genetics of familial combined hyperlipidemia.
  • Author:"Naukkarinen, Jussi;Ehnholm, Christian;Peltonen, Leena"

  • Published Year:2006

  • Journal:Current opinion in lipidology

  • Abstract:"PURPOSE OF REVIEW: To provide an overview of recent advances that have defined the first putative genes behind familial combined hyperlipidemia, the most common genetic dyslipidemia and a major risk factor for early coronary heart disease. RECENT FINDINGS: The first locus for familial combined hyperlipidemia on 1q21-23 revealed a gene encoding a transcription factor critical in lipid and glucose metabolism, USF1. All the associated variants represent noncoding single nucleotide polymorphisms, one of which affects the binding site of nuclear proteins with a putative effect on transcript levels of USF1. Transcript analyses of fat biopsies have exposed risk-allele related changes in the downstream genes. Another recent clue to the molecular pathogenesis of familial combined hyperlipidemia is the association of the high triglyceride trait with the APOA5 gene, located on 11q. More familial combined hyperlipidemia genes are expected to be found, since linkage evidence exists for additional loci on 16q24 and 20q12-q13.1. SUMMARY: Genetic research of familial combined hyperlipidemia families has revealed several linked loci guiding to susceptibility genes. The USF1 transcription factor is the major gene underlying the 1q21-23 linkage. Modifying genes, especially influencing the high triglyceride trait, include APOC3 and APOA5, the latter representing a downstream target of USF1 and implying a USF1-dependent pathway in the molecular pathogenesis of dyslipidemias."

  • 10.1097/01.mol.0000226121.27931.3f

  • |Click to search this paper in PubMed|   | back to gene page|