How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    A polymorphism in lipoprotein lipase affects the severity of Alzheimer's disease pathophysiology.
  • Author:"Blain, Jean-Francois;Aumont, Nicole;Theroux, Louise;Dea, Doris;Poirier, Judes"

  • Published Year:2006

  • Journal:The European journal of neuroscience

  • Abstract:"Emerging evidences indicate a role for lipoprotein lipase (LPL) in degenerative states. Genetic variations in the LPL gene were previously associated to lipid imbalance and coronary artery disease (CAD) risk and severity, a condition that shares pathological features with common Alzheimer's disease (AD). To evaluate whether these genetic variations associate with the risk and pathophysiology of common AD, autopsy-confirmed patients (242 controls, 153 AD) were genotyped for a PvuII single nucleotide polymorphism (SNP; rs285; referred to as the P+ allele) of LPL. Brain LPL mRNA levels, cholesterol levels, amyloid concentration, senile plaques and neurofibrillary tangles density counts were measured and contrasted with specific LPL genotypes. When adjusted for age and sex, homozygosity for the P+ allele resulted in an odds ratio of 2.3 for the risk of developing AD. More importantly, we report that the presence of the P+ allele of LPL significantly affects its mRNA expression level (n = 51; P = 0.026), brain tissue cholesterol levels (n = 55; P = 0.0013), neurofibrillary tangles (n = 52; P = 0.025) and senile plaque (n = 52; P = 0.022) densities. These results indicate that a common polymorphism in the lipoprotein lipase gene modulates the risk level for sporadic AD in the eastern Canadian population but more importantly, indirectly modulates the pathophysiology of the brain in autopsy-confirmed cases."

  • 10.1111/j.1460-9568.2006.05007.x

  • |Click to search this paper in PubMed|   | back to gene page|