How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk.
  • Author:"Humphries, S E;Whittall, R A;Hubbart, C S;Maplebeck, S;Cooper, J A;Soutar, A K;Naoumova, R;Thompson, G R;Seed, M;Durrington, P N;Miller, J P;Betteridge, D J B;Neil, H A W"

  • Published Year:2006

  • Journal:Journal of medical genetics

  • Abstract:"AIMS: To determine the relative frequency of mutations in three different genes (low-density lipoprotein receptor (LDLR), APOB, PCSK9), and to examine their effect in development of coronary heart disease (CHD) in patients with clinically defined definite familial hypercholesterolaemia in UK. Patients and METHODS: 409 patients with familial hypercholesterolaemia patients (158 with CHD) were studied. The LDLR was partially screened by single-strand conformational polymorphism (SSCP) (exons 3, 4, 6-10 and 14) and by using a commercial kit for gross deletions or rearrangements. APOB (p.R3500Q) and PCSK9 (p.D374Y) were detected by specific assays. Coding exons of PCSK9 were screened by SSCP. RESULTS: Mutations were detected in 253 (61.9%) PATIENTS: 236 (57.7%) carried LDLR, 10 (2.4%) carried APOB p.Q3500 and 7 (1.7%) PCSK9 p.Y374. No additional mutations were identified in PCSK9. After adjusting for age, sex, smoking and systolic blood pressure, compared to those with no detectable mutation, the odds ratio of having CHD in those with an LDLR mutation was 1.84 (95% CI 1.10 to 3.06), for APOB 3.40 (0.71 to 16.36), and for PCSK9 19.96 (1.88 to 211.5; p = 0.001 overall). The high risk in patients carrying LDLR and PCSK9 p.Y374 was partly explained by their higher pretreatment cholesterol levels (LDLR, PCSK9 and no mutation, 10.29 (1.85), 13.12 and 9.85 (1.90) mmol/l, respectively, p = 0.001). The post-statin treatment lipid profile in PCSK9 p.Y374 carriers was worse than in patients with no identified mutation (LDL-C, 6.77 (1.82) mmol/l v 4.19 (1.26) mmol/l, p = 0.001, HDL-C 1.09 (0.27) mmol/l v 1.36 (0.36) mmol/l, p = 0.03). CONCLUSIONS: The higher CHD risk in patients carrying PCSK9 p.Y347 or a detected LDLR mutation supports the usefulness of DNA testing in the diagnosis and management of patients with familial hypercholesterolaemia. Mutations in PCSK9 appear uncommon in patients with familial hypercholesterolaemia in UK."

  • 10.1136/jmg.2006.038356

  • |Click to search this paper in PubMed|   | back to gene page|