How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Absence of an interaction between the angiotensin-converting enzyme insertion-deletion polymorphism and pravastatin on cardiovascular disease in high-risk hypertensive patients: the Genetics of Hypertension-Associated Treatment (GenHAT) study.
  • Author:"Maitland-van der Zee, Anke-Hilse;Boerwinkle, Eric;Arnett, Donna K;Davis, Barry R;Leiendecker-Foster, Catherine;Miller, Michael B;Klungel, Olaf H;Ford, Charles E;Eckfeldt, John H"

  • Published Year:2007

  • Journal:American heart journal

  • Abstract:"BACKGROUND: The aim of this study was to determine whether the angiotensin-converting enzyme (ACE) insertion-deletion (ID) polymorphism interacts with pravastatin to modify the risk of coronary heart disease (CHD) and other cardiovascular end points in a large clinical trial. METHODS: GenHAT is an ancillary study of the ALLHAT. The ACE ID genotyped population in the lipid-lowering arm of ALLHAT included 9467 participants randomly assigned to pravastatin (n = 4741) or to usual care (n = 4726). The efficacy of pravastatin in reducing the risk of primary outcome (all-cause mortality) and secondary outcomes (fatal CHD and nonfatal myocardial infarction, cardiovascular disease [CVD] mortality, CHD, stroke, other CVD, non-CVD mortality, stroke, and heart failure) was compared between the genotype strata (dominant model ID + II vs DD, additive model II vs ID vs DD), by examining an interaction term in a Cox proportional hazards model. RESULTS: The relative risk of fatal CHD and nonfatal myocardial infarction among subjects randomized to pravastatin compared with subjects randomized to usual care was similar in subjects with the II genotype (hazard ratio [HR] 0.84, 95% CI 0.59-1.18), the ID genotype (HR 0.84, 95% CI 0.68-1.03), and the DD genotype (HR 0.99, 95% CI 0.77-1.27). CONCLUSIONS: We found no evidence that the ACE ID genotype was a major modifier of the efficacy of pravastatin in reducing the risk of cardiovascular events."

  • 10.1016/j.ahj.2006.10.019

  • |Click to search this paper in PubMed|   | back to gene page|