How to Build CHD@ZJU

CHD related Articles were retrieved from Pubmed, by entering keywords "coronary heart disease" and constrict the publish date from 2000/1/1 to now (2013/1/23). As a result, totally 115898 articles were found and their abstracts were downloaded for text mining. Since some articles didn't contain abstracts, only 88396 abstracts remained.

The text-mining process to get CHD related genes could be divided in to 5 following steps:

  • 1) Extracting all keywords from abstracts and ignoring those keywords start with numbers. 101402 keywords were extracted.

  • 2) Input these keywords into Gene library in ArrayTrack and find possible related genes. 4674 genes were then found.

  • 3) Put these 4674 genes again into pubmed abstracts to find related aticles. Only genes which offical name or there keyword description (such as prolactin for gene PRL) could be found in the abstract would be remained. As a result, 1247 genes were remained.

  • 4) Manually examined on the 1247 genes to validate it was acutally related to CHD. Some genes would be filtered if it represents other meanings (such as gene CAD, Entrez ID:790, carbamoyl-phosphate synthetase 2, is mostly meant coronary arterial disease in articles). 681 genes were then validated with at least one reference.

  • 5) All genes was compared with 1078 CHD genes in RGD database, and 370 genes were overlapped. These 370 genes were labels as "RGD_Supported" and the other 293 genes were labels as "REFERED". All 663 genes had supported references in CHD@ZJU which were examined by step 4.
  • How To contact Us

    Collaboration Information: Prof. Xiaohui Fan (fanxh@zju.edu.cn)

    Website using assistance : Leihong Wu (11019004@zju.edu.cn)




    Glycation of LDL in non-diabetic people: Small dense LDL is preferentially glycated both in vivo and in vitro.
  • Author:"Younis, Nahla;Charlton-Menys, Valentine;Sharma, Reena;Soran, Handrean;Durrington, Paul N"

  • Published Year:2009

  • Journal:Atherosclerosis

  • Abstract:"OBJECTIVE: LDL atherogenicity is frequently attributed to oxidative modification, but glycated LDL, which can participate in many of the cellular processes leading to atherosclerosis, generally circulates at higher concentration even in non-diabetic people. We tested the hypothesis that small-dense LDL, known to be most closely associated with coronary heart disease, undergoes more glycation than other LDL sub-fractions. METHODS AND RESULTS: The concentration of glycated apolipoprotein B (apo B) was measured in serum, LDL and its sub-fractions from 44 non-diabetic subjects. By ELISA serum glycated apoB concentration was 3.0+/-1.1mg/dl (mean+/-S.D.) of which 84.6+/-13.6% was in LDL. Of the glycated apo B in LDL 67.8+/-21.9% was in small dense LDL (LDL3; D1.044-1.063g/ml) whereas only 32.2+/-21.9% was in more buoyant LDL subfractions (LDL1 and 2; D1.019-1.044g/ml). The percentage of apo B present in LDL1 and 2 which was glycated was 1.8+/-1.8% whereas in LDL3 it was 17.4+/-18.5% (P<0.001). Furthermore when LDL sub-fractions from non-diabetics (n=29) were incubated with glucose (30-80mmol/l) glycation of apo B in the denser LDL3 subfraction was significantly more pronounced than in less dense LDL subfractions. CONCLUSION: Small-dense LDL is more susceptible to glycation and this may contribute to the atherogenicity of small-dense LDL, even in non-diabetic people."

  • 10.1016/j.atherosclerosis.2008.04.036

  • |Click to search this paper in PubMed|   | back to gene page|